

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

COMPUTING INTEGRITY
INCORPORATED
60 Belvedere Avenue
Point Richmond, CA 94801-4023
510.233.5400 Sales
510-233.5444 Support
510.233.5446 Facsimile

Hungarian Notation for OOABL
22 March 2006

The use of any form of Hungarian Notation is a topic certain to produce intense opinions, whether
pro or con. Since CI intends to use a form of Hungarian Notation in its published examples and
foundation classes, it seems worthwhile to review the reasons for this choice and the specifics of the
standards that will be used.

Originally, Hungarian Notation was described by Charles Simonyi, a senior engineer at Xerox and
later Microsoft. Since then, there have been many alternate variations on his core idea, some of
which are rather different from the original intent. The core notion of Hungarian Notation is to
apply a prefix to names in order to help identify “type”. In the original formulation, later known as
Apps Hungarian, the “type” was meant to be an indication of the variable’s use or purpose.
Subsequently, another major family of notation developed which is referred to as Systems
Hungarian in which the “type” is intended to be a datatype. See
http://en.wikipedia.org/wiki/Hungarian_notation for more discussion of the historical background.

The formalization used by CI, which is derived from one proposed a number of years ago by Peter
Headland, extends the concept of “type” to include “direction” and “scope”. “Direction” applies
only to parameters and indicates whether the parameter is input, output, or input-output with
respect to its context. “Scope” indicates the applicable scope of the variable. These three aspects
combine to give one a significant amount of information about any particular variable without
having to search for definitions and other references. It is believed that this very limited extension of
type avoids the issues associated with systems using an open-ended extension of characteristics such
as:

a_crszkvc30LastNameCol : constant reference function argument, holding contents
of a database column of type varchar(30) called LastName that was part of the
table's primary key (example from the Wikipedia entry above).

In the CI formalization, the first character, which can be missing, is always direction, the second
always scope (missing for database tables and fields), and the third and fourth indicate the type, so
the prefix is limited to two to four characters from a well-defined set (chart provided at the end).

Hungarian Notation is often associated with the use of “CamelCase”, i.e., mixed upper and lower
letters to assist in identifying multiple words in a name, although there are many people who use
CamelCase without advocating Hungarian Notation. Classic Hungarian Notation places the prefix
in lower case immediately on the front of the word, e.g., chFirstName. CI’s formalization utilizes a
separating underscore to make the name and the type more readily distinguishable, e.g.,
ctt_Invoices and chn_Invoices.

Arguments against the use of Hungarian Notation usually focus on the question of readability.
While this has some point in extreme cases such as the one quoted above, that example merely
illustrates that any convention can be abused. Much of the issue of readability depends on what one

Hungarian Notation for OOABL — 22 March, 2006 — Page 2

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

is used to. For example, Progress Software has historically used upper case for keywords. This is
convenient when referring to isolated keywords in text, such as “OPEN QUERY”, because it makes
it clear that the words are “special”, but in the context of code, there are many who feel that one is
giving emphasis to the wrong part of the code, as if the keywords were shouting. For example, this
fragment from the 10.1A 4GL Reference Manual, is shown there as:

DEFINE QUERY q-order FOR
 customer FIELDS (customer.cust-num customer.name customer.phone),
 order FIELDS (order.order-num order.order-date),
 order-line FIELDS (order-line.line-num order-line.price order-line.qty),
 item FIELDS (item.item-num item.item-name item.cat-desc).
OPEN QUERY q-order FOR EACH customer,
 EACH order OF customer,
 EACH order-line OF order,
 EACH item OF order-line NO-LOCK.

Converting this to lower case keywords, camel case names, no hyphens, but no Hungarian prefixes
except the ones already in the PSC example, produces:

define query qOrder for
 Customer fields (Customer.CustNum Customer.Name Customer.Phone),
 Order fields (Order.OrderNum Order.OrderDate),
 OrderLine fields (OrderLine.LineNum OrderLine.Price OrderLine.Qty),
 Item fields (Item.ItemNum Item.ItemName Item.CatDesc).
open query qOrder for each Customer,
 each Order of Customer,
 each OrderLine OF Order,
 each Item of OrderLine no-lock.

The contrast is hardly dramatic, but has the effect of making the table and field names more
prominent than the ABL keywords. Now lets add the type of Hungarian Notation used by CI:

define query lqu_Order for
 tb_Customer fields (tb_Customer.ch_CustNum tb_Customer.ch_Name tb_Customer.ch_Phone),
 tb_Order fields (tb_Order.in_OrderNum tb_Order.da_OrderDate),
 tb_OrderLine fields (tb_OrderLine.in_LineNum tb_OrderLine.de_Price tb_OrderLine.in_Qty),
 tb_Item fields (tb_Item.in_ItemNum tb_Item.ch_ItemName tb_Item.ch_CatDesc).
open query qu_Order for each tb_Customer,
 each tb_Order of tb_Customer,
 each tb_OrderLine OF tb_Order,
 each tb_Item of tb_OrderLine no-lock.

Note that in this example, all references are to table or field names and therefore the scope
component is considered meaningless and thus is missing. If one is unused to reading Hungarian
Notation, the initial reaction is likely to be that this is less readable than the prior example, but
consider the additional information provided. We know, for example, that the query is local to a
procedure and that all of the tables and fields are from the database. Suppose, for example, some
or all of the “tb_” prefixes where replaced with “ltt_” prefixes; then we would know that we were
dealing with local temp-tables rather than database tables. Or perhaps an “mtt_” prefix telling us
that the temp-table was local to a method. This is significant additional information that is otherwise
not available without reading additional code.

Now consider a simple statement like:

IF NOT ans THEN DO:

In the all caps keyword form, the variable almost disappears. Converting case we get:

Hungarian Notation for OOABL — 22 March, 2006 — Page 3

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

if not Ans then do:

And, adding the Hungarian prefix we get:

if not llg_Ans then do:

In this case, we certainly would have guessed that Ans must have been a logical variable or it
wouldn’t compile, but the “llg_” prefix tells us that it is a local variable scoped to the procedure,
which tells us a great deal about where it might be assigned a value. For example, suppose a block
of code like:

if lch_Type = “C” then do:
 update llg_Ans with frame fr_Decision.
end.
if not llg_Ans then do:

In a case like this, we can see that the value of llg_Ans might come from the update, but it might
come from somewhere else. Consider what a different set of information this is than if the name of
the variable was iplg_Ans, telling us that it was an input parameter and therefore its initial value
came from outside the procedure. One prefix tells us to look to variable definitions for default
values, the other to the calling program.

One of the classic values of this type of notation is the ability to have two otherwise identical variable
names that are of different type. E.g, ctt_Invoice and chn_Invoice, the former a temp-table scoped
to a class and the latter a handle to that temp-table, also scoped to the class. Or, lin_Quantity and
lch_Quantity where the former is the variable used in computations and the latter is the form used in
displays to allow special handling for units of measure.

To the programmer who has spent the last 10 years reading nothing but upper case keyword code,
probably even the lower case keyword code looks funny, much less something with underscores and
strange letters hanging out in front. But, work with code that way for a while and it becomes
expected, normal … and useful. I personally was opposed to this sort of notation until I was
persuaded of its advantages and now that I am used to it, I would leave it behind only very
reluctantly.

Interestingly, while there are many who are opposed to Hungarian Notation, they will use aspects of
it in their own code. E.g., there are a number of examples of this that have appeared in more recent
code from PSC such as ttCustomer to indicate a Customer temp-table or qOrder in the code sample
above. This is particularly notable in the series of whitepapers by John Sadd on the OpenEdge
Reference Architecture (OERA) which includes examples such as eOrder (used for the “entity” or
domain object temp-table), etOrder.i (the file containing the definition of eOrder, hBuffer (handle to
Buffer), srcOrder (query and data-source for Order), sceOrder.p (file containing the data-source
code), dsOrder (data set for Order), daOrder.i (include file with data access code for Order),
daOrderValidate.p (procedure file with validation logic for Order), beEntity.p (procedure for
business entity for Order), etc. Not all of these are variable names, of course, but the principle is the
same. What is clear is that, while John Sadd has not adopted a universal notation for all variables
and other names, that he has adopted and advocates a strong naming convention for a number of
key elements of his formulation of OERA.

Hungarian Notation for OOABL — 22 March, 2006 — Page 4

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

In a similar fashion, other PABL shops have adopted their own conventions over the years to
provide special names for part of the overall nameset. Some of these are similar to the examples in
the prior paragraph, e.g., hBuffer, and others are less clear, e.g., the old Varnet Order# and
Order## to indicate secondary and tertiary buffers. One might suggest that all such naming
conventions are an indication of the recognition of some virtue in a simple, standardized prefix or
suffix naming system to identify names of a particular type or derivative names (as hBuffer is a
handle to Buffer), but those adopting these conventions have declined such a standard universally.

While the current document is focused specifically on a particular prefix notation, it should be noted
that the notion of standardized naming practices is a much broader issue of great importance. E.g.,
if one is going to adopt a Finder and Mapper object structure for data access, as will be described
elsewhere, it is clearly poor practice to suddenly name something OrderGetter instead of
OrderFinder, because significant information is lost. Similarly, if one has defined a type of
Collection Class as SortedSet, then if one calls an object OrderSortedSet, it had better be an
instance of that type of Collection Class.

This issue of information provided through standard naming practice lies at the heart of CI’s use of
Hungarian Notation. One is faced with a choice of whether or not to provide potentially useful
information as a part of a name and how to represent that information. E.g., in the case of a
variable local to a method which is the character version of an order quantity for display purposes,
one could include none of this context information and call the variable simply OrderQty, but then
one might have a naming conflict with the integer version which is used for computation and
persistence. One could, of course, call it OrderQtyChar or some such, but then, if the other variable
is left as OrderQty, that doesn’t immediately identify what relationship it has to the longer name.
Moreover, because one name is a subset of the other, one can have issues trying to do search and
replace because the shorter form cannot be uniquely identified by some editors under some
conditions. And, of course, neither lets one know whether the variable is local to a method or
internal procedure, is a parameter, or anything about its presumed characteristics. Those
associations can only be determined by searching for definitions and other references.

By contrast, simply calling these two variables mch_OrderQty and min_OrderQty, or whatever scope
prefix is appropriate, conveys this contrast very compactly, consistently, and with facility for doing
whatever one might need in search and replace. This, by the way, is one of the reasons for the
convention of using a “tb_” prefix for database tables, which one might otherwise be tempted to
leave unmodified, since it makes searching for them easy.

It is not expected that this short discussion will convince anyone with strong “anti-Hungarian” views
to suddenly convert to using Hungarian Notation. It is hoped, however, that having some
understanding of why people might choose to adopt this convention and its possible benefits will at
least result in some tolerance of this “peculiarity” of the code we will be publishing.

The full current set of naming standards in use at CI follows. These standards have recently been
updated to include prefixes appropriate to 10.1A and so may undergo additional revision with
experience.

Hungarian Notation for OOABL — 22 March, 2006 — Page 5

© 2006 Computing Integrity Inc. — Proprietary and Confidential, Not for Release or Use Without Permission

CI STANDARD NAMING PREFIXES
Direction Scope Type

 Not applicable Not applicable bl Block
b Both In & Out c Class br Browser
i In g Global (rare) bf Buffer
o Out i Internal Procedure bt Button
 l Procedure by Byte
 m Method ch Character
 p Parameter ds DataSource
 s Shared (avoid) da Date
 t Trigger dt DateTime
 dz DateTime-TZ
 de Decimal
 dl Delimited List
 fr Frame
 hn Handle
 im Image
 ix Index
 in Integer
 lb Label
 lg Logical
 ln Long
 lc LongChar
 mp Memory Pointer
 mn Menu
 mi Menu Item
 pp Persistent Procedure
 pd ProDataSet
 qu Query
 rw Raw
 ri Recid/Rowid
 rc Rectangle
 sq Sequence
 sh Socket Handle
 vw SQL View
 st Stream
 sm Sub-Menu
 sp SuperProcedure
 sy Symbol
 tb Table
 tt Temp-Table

 vn Variable Name
 wh Widget-Handle
 wp Widget-Pool
 wn Window
 wt Work-Table (Avoid)
 xh XML Handle

