
 COMPUTING INTEGRITY
INCORPORATED
60 Belvedere Avenue
Point Richmond, CA 94801-4023
510.233.5400 Sales
510-233.5444 Support
510.233.5446 Facsimile

OERA Strategies:
Object-Oriented or Not?

Version 30 April 2007
Thomas Mercer-Hursh

Introduction
The OpenEdge Reference Architecture (OERA) describes an overall structure and pattern for the
architecture of modern applications, but does not in itself specify any particular implementation.
Progress Software (PSC) has generated a series of whitepapers over recent years which discuss
various aspects of this architecture with some sample code, but this code is limited in scope and
there is no pretense of it illustrating production-ready techniques. More recently, PSC introduced
AutoEdge, an “application example” meant to illustrate one way in which OERA principles might be
applied in a real application, but it too is built on a number of simplifying assumptions and does not
pretend to offer production ready code on which customers might build real systems without
significant further work.

With the exception of three very recent whitepapers, all of the sample and example code has been
built using procedures, albeit with some “imitations” of object-oriented (OO) design principles.
However, since OpenEdge release 10.1A over a year ago, the Advanced Business Language (ABL)
has contained true OO capabilities. This raises the obvious question, particularly since the broader
world of software design patterns and tools is dominated by OO, of whether future sample and
example code should utilize the OO features in ABL.

The three recent whitepapers and associated webinar dealing with using OO for OERA suggest that
PSC believes that some form of guidance on using OO in these contexts is an appropriate goal to
which PSC should commit some resources. However, the models presented in these materials do
not conform to generally accepted OO design principles. Instead, they present a sort of hybrid
model with some OO characteristics, but which also makes use of ABL features for handling data in
a relational fashion, rather than in an object fashion. I have questioned the desirability of this
approach in forums on the Progress Software Developers Network (PSDN) and it is the intent of the
current writing to explore this question more fully.

Questions
There are a number of interrelated questions which arise in examining the question of whether and
how to use OO in OERA sample and example code. These include:
1. What are the pros and cons of the various ways in using or not using OO for samples, examples,

or production code?
2. Should PSC be selecting a best practice strategy from among these options to advocate

exclusively going forward or should it create materials using multiple strategies?
3. Should there be an “AutoEdge 2.0” which incorporates lessons learned and possibly illustrates a

different strategy than the one used in the initial AutoEdge?
4. Is it desirable for PSC to attempt to create production quality examples or even framework

components or should PSC confine itself to the current level of samples and examples?

OERA Strategies — 30 April 2007— Page 2

A complete treatment of all of these questions exceeds the scope of the current writing, but I believe
that at least some consideration of all of these questions is appropriate while focusing on a
comparison of these approaches.

The Strategies
For ease of reference, it is convenient to give each of what I see as three basic strategies a name.
Since the factor that distinguishes these strategies is their use or non-use of OO programming
methods and principles, the names I am proposing logically relate to their use of OO. These are:

• NOO: Non-OO, i.e., a strategy which uses only ABL procedures, not classes, although it may

use some OO terminology and may imitate some OO concepts.

• ROH: Relational-Object Hybrid, i.e., a strategy in which programming is in the form of ABL

classes and using OO principles such as inheritance, but in which data is expressed in the form
of temp-tables (TTs) or ProDataSets (PDSs) which are passed between objects, rather than
having the data encapsulated in an entity object with its behavior.

• TOO: True OO, i.e., a strategy where there is a traditional OO encapsulation in which data and

behavior are encapsulated into entity objects and it is the object, not just the data, which is
passed between layers.

NOO
The bulk of existing OERA materials from PSC do not utilize any OO language constructs. There is
some imitation of OO terminology and thinking, but in a fashion consistent with ROH, i.e., data is
communicated between the data access layer and the business logic layer through ProDataSets.
Because this strategy uses no OO language constructs, it is more familiar to the general ABL
programmer and to a large extent it is a strategy which does not rely on the latest release of ABL in
order to be implemented. This later point is possibly a bit deceptive, however, since other language
enhancements such as REFERENCE-ONLY are also limited to recent releases and play a significant role
in current implementation models, so it is not as if the current models can be backported to version
9.x environments without change. There is also some question about the familiarity which most
ABL programmers have with ProDataSets as these have not been widely used in the general
Progress community.

Superprocedures, which have often been cited in terms of their possible virtue for imitating OO
capabilities, have a certain simplicity of use compared with objects, e.g., fairly simple disciplines or
managers can result in an effective singleton with little or no actual coding and a superprocedure
reference does not need to be created in each procedure where it is referenced in the way that is
required for objects. The flip side of this simplicity, of course, is that their use is less deterministic
and more difficult to model and has no compile time checking to insure correctness. Encapsulation
is entirely a question of programmer discipline and use.

Passing of PDSs from layer to layer requires compatible temp-table and PDS definitions in both
sender and receiver, which tends to require the use of include files for these data structures in
components from multiple layers, leading to poor encapsulation and tying of multiple components
to a single data structure. The big downside of the NOO strategy, of course, is that one doesn’t gain
any of the benefits of the OO language features including strong typing, compile-time checking, and
strong encapsulation. Moreover, one needs to adapt and interpret design patterns from the OO

OERA Strategies — 30 April 2007— Page 3

world rather than using them directly and one cannot fully utilize the capabilities of OO modeling
tools in design and generation of the system.

ROH
The newest materials on using OO for OERA utilize what I have been calling a relational-object
hybrid strategy in that they use OO ABL constructs such as classes and inheritance, but data is held
in relational-type structures such as PDSs and is passed from object to object, layer to layer, in much
the same way as in the NOO strategy. The concept behind this hybrid approach is that ABL is
strong in providing constructs for dealing with relational data and that this strength should be
exploited in any OO implementation. Like similar NOO handling of data, one can argue that this is
also a more familiar approach to handling data for most existing ABL programmers.

The intuitive objection to this strategy from the perspective of those familiar with OO principles is
that the data is not encapsulated, but rather is in a very exposed data structure. While this local data
structure can be abstracted to some degree from the stored form, e.g., it can be appropriately
denormalized, the structure of the data is exposed wherever it is used in exactly the same way as the
structure of the database is exposed in older code that accesses the database directly from all
components. Thus, any alteration in the structure of the data may impact every component that
uses it, unlike OO encapsulation where any amount of change may be made to the data structure
internal to the object without impacting any component using the data, as long as the contract of the
object is preserved.

It can be argued that the relational PDS structures of this strategy are easier to work with than
having to create methods to accomplish equivalent behaviors because these structures are can be
accessed by familiar ABL relational language constructs such as QUERY and FOR EACH. However, this
also means that one is embedding the relational logic of access in all of the places the data is used
instead of centralizing the method of access in a single entity object. Thus, one has duplication of
code and fragility and brittleness in response to change. If the data were only ever passed between
a data access object and what is called a business entity in AutoEdge and that all other usage
employed the business entity, then the possible points of change might be controlled, but then it
seems that one would not be achieving the full ease of use which is driving ROH, but instead would
be approaching the TOO encapsulation. I.e., if one has decided that passing a PDS is the right thing
to do between the data access layer and the business logic layer, it seems likely that one would
decide that any transfer of data within the data access layer should also involve passing a PDS.

Moreover, the supposed familiarity and convenience of continued use of relational access patterns
may be somewhat illusory since most ABL programmers who are unfamiliar with OO patterns are
also unfamiliar with PDS programming. Using the data in the PDS may be familiar, but the
techniques of creating it are not.

TOO
One certainly needs to exercise care in adopting OO designs and principles from 3GL OO languages
into ABL, a 4GL, because there are advanced language features in ABL which should be used in
preference to more primitive approaches in those other languages. A classic example of this, on
which I have written previously1, is the collection class, which should almost certainly be
implemented in the current ABL using temp-tables, rather than the primitive hash tables and
unordered lists typical of, for example, Java. And, of course, one also needs to recognize that not

1 See http://www.oehive.org/ExceptionClass

OERA Strategies — 30 April 2007— Page 4

everything done in an OO language is good OO. There are a number of common practices in other
OO languages that we should not seek to emulate since they are not good practices from a true OO
perspective.

Nevertheless, one of the most basic of OO principles is the encapsulation of data and behavior into
objects. This provides a reusable component whose internal implementation is concealed from the
components using the object, thus allowing implementation details to change and capabilities to be
extended without disturbing any other object. If an object changes internal implementation, no
other object needs to change. If an object extends its capabilities to implement new features, but
preserves the existing contract, no object using the existing contract needs to change. The only
object which needs change, if any, is one that will utilize the new extended capabilities.

Even if data is directly held in the form of a temp-table or a PDS, wrapping that data structure in an
object with appropriate methods means that the definition of the data structure needs to appear in
only one place. All other components can utilize the data through methods on the object and that
object’s behavior can remain consistent despite changes in the underlying data structure. This
approach also means that data access logic is implemented in one place only, so if there is any need
for revision, it is not necessary to search out scattered pieces of ABL in various places in the
application, but rather the change can be made only in the object containing the data.

One possible challenge to the traditional value placed on encapsulation in OO is the increasing use
of datasets in some OO languages, particularly .NET. However, it seems that the primary role of
these datasets is in sending data “over the wire”, not in communicating between objects within a
single session. It is quite reasonable to want to serialize data for transmission like this and, indeed,
there is some evidence that serializing it to XML may have advantages over even sending it in the
form of temp-tables or PDSs. Even were it possible to send entire objects across the wire, one would
be transmitting a great deal that did not need to be sent since it is possible to instantiate a fresh
instance of the object based on the data alone. Moreover, by sending just the data, one also gains
the freedom of instantiating a different object with the same data, e.g., a read-only version.

It should also be noted that, while traditional ABL programmers have not been trained in OO, there
are a fair number of ABL programmers who have also worked in other languages such as .NET and
Java, possibly for user interface code, or who have been exposed to OO thinking in other contexts,
e.g., the OO nature of Actuate Basic. Moreover, any younger programmers are likely to have
received education using OO languages. So, it is not as if there are no OO resources in the ABL
community or that OO is necessarily unfamiliar to all ABL programmers. Indeed, while there is
clearly a learning barrier for an existing ABL programmer that does not know OO to learn OO, the
barrier to learning the ins and outs of PDS may be even greater because PDS are unique to ABL
and there are only PSC materials to learn from.

Summary
While all of these strategies have some apparent virtues and faults, these virtues and faults are not
equal. The NOO approach has certainly had validity up through the introduction of 10.1A, since
there was no alternative, and probably has some continuing virtue because not every Progress site is
on the latest release of Progress and yet every site can benefit by thinking in terms of OERA. The
NOO approach is more easily understood by the bulk of ABL programmers and can serve as a
source of best practice models, even when full OERA implementations are not being done.

OERA Strategies — 30 April 2007— Page 5

On balance, however, it is difficult to justify the ROH strategy considering the way in which it breaks
the fundamental principle of OO encapsulation. While it does allow for handling data in a way that
is more familiar, it scatters those data handling expressions through the application instead of
encapsulating them within an object. Classic ABL data handling is still appropriate within an object,
but effective OO benefits are only achieved when the data is encapsulated with the behavior.
Whatever virtues the ROH strategy has are outweighed by its disadvantages.

My recommendation, therefore, would be for PSC to utilize the TOO strategy for all forward-looking
materials while considering also continuing the NOO strategy as a supplement, if resources permit.
When possible, it would be preferable to derive the NOO models from the TOO ones or at least to
evolve them as much in parallel as possible so that those attempting to acquire OO can see the
correspondence between the two. Ultimately, this may require revision of the current models being
used for NOO code.

It is worth noting that, if one orients toward the TOO strategy, one optimizes the potential for
leveraging modeling tools, object generation technology such as MDA, and the facility by which OO
ABL developers can leverage established OO design patterns in their work.

Associated Issues
There are other issues which are related to the choice of OERA strategy which also deserve some
discussion in this context. One of these is the role of the ProDataSet in relation to OO code. While
in some ways the PDS is an example of a higher level construct, such as one expects in a 4GL, it is
also possible to see it as a sort of proto-object, i.e., something one did while waiting to get around to
“real” objects. From that perspective, one might question whether, now that we have “real” objects,
the PDS had outlived its usefulness since it has limitations and rigidity which true objects don’t have.
This idea may be reinforced by the difficulties which a number of people seem to have had in
getting PDSs to “behave” properly, possibly because their use is not well understood, but also
possibly because they have a rigid behavior which may not fit all circumstances. Similarly, while it
seems attractive to have such PDS functionality as the WRITE-XML() and READ-XML() methods
available as built-ins, experience seems to suggest that the built-in functionality is sometimes
insufficient or inappropriate in some way and one is forced to write one’s own methods anyway2.

Still, there are some very nice features built in to PDSs such as change tracking, which would be
desirable features for their use in objects or desirable features for objects to possess in their own
right. I would suggest that this relationship be tracked as TOO OERA models develop in order to
see whether objects might acquire features now associated with PDS or if PDS and objects can be
provided with desirable linkages. It may be that appropriate “wrapping” of PDSs in objects can
result in a combination which provides the best of both. It should be our expectation that there are
valuable synergies available here, but we should not be mindlessly committed to using PDS if they
turn out not to be a good fit. Note that the very thing which makes PDSs attractive to those
advocating the ROH strategy, i.e., their preservation of the relational access which is ABL’s historical
strength, is potentially suspicious outside of the data access layer since objects are not inherently
relational.

2 One example of this which came up recently on PSDN was someone who wanted the WRITE-XML() method to nest a sub-table under a
particular field in the master table in order to maintain compatibility with the XML being currently generated, possibly since the detail was
related to that field and that would be the natural XML expression. The only options for WRITE-XML() are sequential tables or tables
nested in a master-detail structure, reflecting the underlying relational orientation. The solution was to forgo the built-in method for a
hand-written one.

OERA Strategies — 30 April 2007— Page 6

One area which illustrates this issue is the contrast between a set object and an individual object. In
the NOO and ROH strategies, there is a tendency to use PDSs to hold data, even when there is only
a single “record” expected. One gains a certain flexibility this way, since a single interface can
support either single records or sets, but there is a great deal of overhead associated with using a
PDS to hold a single instance. Indeed, there is also a great deal of additional code required to use
this approach for an object which is intended as a single instance since one needs both the
properties and the link between the properties and the underlying PDS or TT, whereas the
properties alone are sufficient otherwise. There is a great deal of simplicity which comes from simply
using properties, although one may be losing the change tracking inherent in a PDS.

It should be noted that it would be a very attractive addition to the ABL if it were possible to define
properties which were mapped to a buffer and this buffer could have some of the capabilities of
PDSs and TTs such as change tracking. A very simple direct syntax for this structure would keep
single instance objects very simple and yet provide advanced functionality with minimum coding.
This is an example of a way in which thinking about connecting PDS functionality with object
functionality can lead to enhanced capability.

A related issue is whether a set or collection object should consist of a temp-table of individual
objects or whether it should be simply a PDS with an object wrapper. As a general purpose tool, the
former has appeal in the same way that generic collections are useful in Java, but there are certainly
cases where there is also appeal for having a PDS containing the equivalent of the relational data
behind a whole set of entities and using traditional ABL language to iterate on and process that set.
For certain types of data and certain operations, the latter is likely to be compelling, e.g., the ability
to provide many indices and routes of access on a set of orders. There is no reason, however, that a
set object of this type can’t return a single entity object in response to a method so that externally all
logic can continue to operate in the same way as if the set had contained actual objects. At the
same time, the generic collection object also almost certainly has a role.

Another associated issue is the difference between the terminology now in use for NOO and ROH
strategies in which a Business Entity is a business logic layer component containing the logic related
to the entity and which accepts a PDS from the data access layer versus the use in the TOO strategy,
where one has true entity objects which are marshaled in the data access layer and passed to the
business logic layer for use. Some care needs to be taken in documentation to insure that the
former use is not confused with the latter as the later is, I believe, the expected meaning in any OO
context.

AutoEdge 2.0 and Framework
Having only recently released AutoEdge and knowing that it was a project which took more time
and resources to complete than were expected, it is difficult to be thinking in terms of the possible
need for a second version. However, I think there are some excellent reasons why this should be
considered.

The most apparent reason, of course, is that if one determines that TOO is going to be the primary
recommended strategy going forward, then it would clearly be desirable to have an OERA
application example which illustrated the use of this strategy. And, it should be recognized that
“doing it all over again in TOO” isn’t really doing it all over again since the application has already
been written and not only can a great deal of the existing code be used, but even when it needs to
be significantly repackaged the existing code documents the needed behavior in great detail so there

OERA Strategies — 30 April 2007— Page 7

is no need to go through the “discovery” process which certainly must have accompanied the
original design.

However, one of the compelling reasons to consider this revision is that AutoEdge has been and is
likely to be used as a model for production systems, when it is not really appropriate to be used as
such a model. While PSC disclaims that it was intended as such a model, it is the closest thing
available to such a model and so people hungry for models are going to look at it that way. In a
recent webinar, one of the participants talked about his reason for selecting PSC to provide the
mentoring for his company’s transformation efforts by saying “they wrote this stuff”. I.e., there is a
tendency for people to look at PSC whitepapers, code samples, and code examples as authoritative
communications from the source. If the person looking at this material is sophisticated about the
issues involved, they are in a position to evaluate the materials fairly in the way they were intended,
i.e., as pedagogical or as starting points for one’s own considerations. But, if the consumer is not
particularly sophisticated about these issues, no amount of disclaimer is going to keep them from
thinking they must be authoritative.

Not only can this situation lead to disappointment and frustration as people discover empirically that
these models are not ready for production use, but there is a huge opportunity cost because the
response is likely to be minimum patching necessary to get the code working, not a discovery
process that leads to a high quality solution. Had the materials they looked at originally exemplified
best practice for production systems, then these users would not only have had a much happier
development experience, but they are likely to end up with better software based on these better
models.

In fact, I think there is a superb opportunity here to not just create a better example, but also to
simultaneously extract from the example individual components which are appropriate ingredients
in a production quality framework, components which could be used directly, not just as models.
Naturally, no one form of component is perfect for every use, but by separating these components
as individually published elements with a defined interface, then it also becomes possible to publish
alternative versions of the components for different purposes. For example, one might have an
authentication and access control component whose original version was based on tables in a
Progress database and then create an alternate version which was based on an LDAP source. Both
have the same signature and are plug-compatible according to the need of the site. Even before
alternate versions are actually created, accompanying whitepapers can easily point to how such
alternate versions might be created and fit into the same interface. I would suggest that it would be
well worth considering making this an open source project so that contributions to improved and
alternate forms could also come from the Progress community.

While arriving at AutoEdge 2.0 in full form and a collection of candidate production framework
components would be a project that would take some time to complete, benefits can be derived
even quite early in the project. My recommendation would be to start the project with a
combination of open solicitation and direct interviews with leading APs to define the range of
requirements of production systems, i.e., what is it that people really need or what would they like to
have if they had it all to do over again. This can be documented as a set of goal specifications,
probably an evolving document or set of documents, and would be highly useful in and of itself for
companies to use in identifying their own needs. This could be followed by white papers proposing
plans for each of the framework components identified from these needs. The whitepapers again
provide a useful focus for discussion and decision by those involved in designing their own

OERA Strategies — 30 April 2007— Page 8

solutions. This would be followed by actual initial versions of the framework components which are
useful both as actual components and for illustrating programming principles. Using the open
source approach, these would serve as the floor for an on-going effort of creating different “flavors”
to suit different needs.

An actual AutoEdge 2.0 implementation could follow this in parallel since once one had identified a
framework component, one would isolate and remove that aspect of AutoEdge and replace it with
the component, thus illustrating its use. Simultaneously, one could evolve aspects of the AutoEdge
specification itself to make the schema and structure better reflect the complexities of a production
system. I am not suggesting that one would recreate an application as complex as a real world
production system, but that there are a number of unnecessary simplifying assumptions in AutoEdge
which clearly don’t correspond to the way that production systems work, but which require only a
small amount of additional complexity to make them much more production like. A good example
of this is the inventory system, which at a minimum should have multiple “warehouses” to identify
multiple storage locations and the list of available demo vehicles should be a separate table with
properties appropriate to a demo which do not apply to a car not used as a demo. Anyone with a
background in real ERP systems could easily add some of this kind of more robust structure without
making the actual application unduly complicated to create or understand.

Prior to beginning this development one should also gather feedback on other lessons which might
have been learned in the process of writing AutoEdge which were not incorporated into the released
version. One example of this is that the naming convention and directory structure are not suitable
for a large application and this is something which could easily be done such as to provide a better
model. An OO version should almost certainly use the com.progress.autoedge type package
naming which is common in most OO environments.

While this might seem like a large undertaking, I believe that it is one whose benefits are substantial
and the work required modest in proportion to those benefits. As proposed, this project would
produce:
1. Whitepapers documenting the needs of a number of common production-quality framework

components;
2. Whitepapers documenting available strategies for fulfilling these needs;
3. Sample framework components which can be used as is or adapted to local issues;
4. A reference application illustrating good OO design practice;
5. A reference application illustrating the use of the framework components; and
6. A reference application which actually illustrates the use of ABL in a production-quality model.
This seems to me to provide enormous benefit both for assisting those developing new ABL
applications and for those contemplating application transformation following OERA principles. It
also could be used extensively in education and consulting efforts.

