COMPUTING INTEGRITY PROGRESS Application Partner

INCORPORATED

60 Belvedere Avenue

Point Richmond, CA 94801-4023
510.233.5400 Sales

510-233.5444 Support
510.233.5446 Facsimile

The Transformation Triangle
21 June 2008
Thomas Mercer-Hursh

ABSTRACT

Use Cases &
Requirements

CONCRETE CONCRETE
Legacy — - — - -_— Finished
System Stepwize "In-place” Transformation "New" System

Development that follows traditional Object-Oriented Analysis & Design (OOAD) methodologies
begins with tools such as Use Cases and Requirements specifications, which are very abstracted from
the target software. Through a series of steps, some of which may be automated transformations,
these abstract elements are gradually converted into more and more concrete model forms, which
are closer and closer to the target software that is the focus of the development effort. In particular,
using the techniques of Model-Driven Architecture (MDA), models are transformed from
Computationally Independent Models (CIM) to Platform Independent Models (PIM) to Platform
Specific Models (PSM). For example, the PIM might be a model which fully specifies the target
software, but without a User Interface, and the PSM resulting from one stage of the transformation
would then have a specific User Interface applied to that model. The transition of PIM->PSM can
occur multiple times, with the PSM from one step providing the PIM of the next step. Thus, the
notions of Independent and Specific are relative to the context.

While this general approach can be highly successful for developing new systems, when considering
the transformation of an existing legacy system one has a somewhat different problem. In this case
the concrete, “finished” system already exists, but something about it is “wrong”. It might use an
outdated technology, an old user interface technology or style, or have a monolithic architecture,
which is not as well suited as service-oriented architectures for nimble response to changing business
conditions. Whatever its flaw or flaws, the desire for transformation indicates that there is a need for
substantial change in the application, far beyond the day to day maintenance, modifications, and
small new features which are typical of mature applications.

The Transformation Triangle — 21 June 2008— Page 2

Such legacy applications are also often poorly documented. Ewven if there were design documents
created at the time the software was originally written, it is typical for these to be so badly out of date
as to be of limited use as documentation for the current system. The original intent and purpose
which drove the current design is reflected only in the details of the existing software, where it can be
difficult to discern. Thus, it is very difficult to imagine a transformation process which would reverse
the normal OOAD process by creating abstract model forms from concrete ones. Even when one is
working in a normal OOAD context where the software has been created by moving from abstract to
concrete forms, if one modifies the code rather than the model and wants to bring the model back
into line with the revised code, only the simplest and most straightforward transformations can be
reversed and the more abstract levels can only be corrected manually.

If there were some “magic” tool which would create the abstract components corresponding to an
existing legacy application, this would be enormously attractive. Then, one could perform some
reorganization of those elements to better suit modern architectural practice and use well understood
OOAD processes to create a fresh application with a new architecture and a new user interface. This
fresh application could be just as modern in its technology and principles as one wanted. However,
no such “magic” tool exists.

The difficulty of this problem can be appreciated by considering a simple example from a typical
legacy application. Consider a simple file maintenance program. This program or group of
programs might easily be hundreds of lines of code. Exactly what those hundreds of lines would
look like are likely to vary significantly from one application to another based on both the state of
technology at the time it was written and the “style” of the shop where it was created. All or most
file maintenance programs from the same application are likely to be similar in structure, unless
there was a shift in style during the life of the application, but the programs from one application are
likely to be quite different in details than those from another application. This typical pattern of how
such programs are written in a given shop constitutes a kind of intrinsic framework.

If one was working in the context of such an intrinsic framework and were given the schema for the
table to be maintained and any special business logic which applied, one would have little difficulty
in copying the framework pattern and applying it to these new elements. But, when we are trying to
create an abstract model, we want to extract just the schema and business rules because the rest of
the framework will be discarded in favor of the framework to be used for the new architecture. Seen
from this perspective, the intrinsic framework of the legacy application is “noise” which is getting in
the way of us extracting the “signal” of the key information.

To date, there is no software that can do this kind of “noise removal” so moving from concrete to
abstract is a largely manual process. Indeed, in order to understand what one reads in the code, it is
likely that one has to also interview the users in order to determine why the code behaves in a
certain way, so the effort required may not be substantially less than simply designing the system
from scratch. In fact, the biggest benefit in this context of having the legacy code as a starting point
may be that one has a very concrete documentation of what has been considered correct behavior,
which is not always easily determined from user interviews. If there were software that could
automate or semi-automate large parts of this process, it would be perhaps the most desirable
approach to transformation since we would end up with a completely fresh application using all of
the most modern technology and architectural principles. But, without such software, a complete
transformation along this path can be extremely expensive and time consuming.

The Transformation Triangle — 21 June 2008— Page 3

In any transformation effort there may be selected parts of the application that are appropriate for
this kind of complete re-invention. This might be, for example, a module which was known to need
substantial redesign anyway, so that taking the approach of doing a fresh implementation from core
principles can be less time-consuming than doing an in-place redesign. Such selective re-invention
tends to work only when there is a well-identified and well-separated module that is appropriate for
more intensive upgrade.

While such re-invention is obviously desirable, since the resulting application is fully modernized,
many companies cannot afford the massive effort required. The alternative is to perform some
kind of stepwise transformation, making incremental improvements over a period of time. It should
be noted that applying a stepwise approach is likely to require more total effort and a greater length
of time than direct re-invention, if one carries it through to the same end point, but most companies
utilizing a stepwise approach only make partial transformations, thus moderating the cost and effort.

One of the forms of stepwise transformation which has become popular in recent years is a
progressive migration to a service-oriented architecture (SOA). In this approach, one typically
begins by implementing an Enterprise Service Bus (ESB) to serve as the messaging backbone and
then focuses on a small series of key projects to convert them from the legacy form to a service.
One classic example of this kind of re-engineering might be an application which had some complex
body of code which was more or less replicated in multiple modules or systems, each differing
slightly in functionality. Since changes in one version need to be manually replicated in the other
systems, such situations are error prone and labor intensive. By centralizing all versions of this code
in a common service, which is then called by all of the consumers, future changes can be
implemented with consistency and lack of disruption. The loose coupling characteristic of SOAs
means that the system is more resilient to change, typically allowing individual services to be
upgraded as needed without changes to other services.

In such progressive SOA re-engineering, there is often a very high level of harvesting of code since
the approach tends to be more one of putting a wrapper on existing code than it is one of creating
entirely new code. At some point, the “insides” of a service may get rewritten if this is indicated, but
in many cases one simply proceeds with the old code wrapped in a new interface and the
architectural shift is in the move from a tightly coupled monolithic system to a loosely coupled
collection of services. This is very different from the architectural shift which results from re-
invention. While re-invention might include a shift to SOA, it also produces changes to all the
details of the application as well. E.g., in the ABL world, it would not be surprising to find the code
inside a service developed by the progressive approach continuing to use shared variables, while
these would never appear in a re-invented application.

The two most common goals of transformation are a move to SOA and separation of user interface
(UI) from business logic (BL), usually accompanied by a shift in the technology for the Ul, e.g., to a
web or other non-ABL client. A stepwise approach is easily applied to a move to SOA since all
unmodified parts of the application continue to work as they did before and the changes are
primarily “behind the scenes”. When all functions in a given area have been converted to services,
it becomes quite easy to provide a new Ul for those functions because the desired separation of Ul
and BL has been achieved by moving the BL into services. But, this tends to defer the UI shift for a
significant period while the conversion to services takes place and tends to only allow the conversion
of specific clusters of functions rather than an application wide shift. This can meet the needs of
some businesses, e.g., where the interest in a new Ul is concentrated on a limited number of

The Transformation Triangle — 21 June 2008— Page 4

functions such as web access for customers for creating orders. But, it does not provide for an
overall shift in the Ul for an application.

If the goal of the transformation is dominated by the desire for a new U], this is less readily achieved
by a stepwise approach since converting individual functions tends to result in users require a mix of
old and new Ul required to complete their work, which can be confusing and awkward. At a
minimum, one tends to have to select whole modules for conversion at each step. Since most
legacy applications are monolithic in architecture, with Ul, BL, and data access all mixed together,
such a transformation can closely resemble a complete re-write, at least of the selected modules.

In terms of moving toward compliance with the layered structure of the OpenEdge® Reference
Architecture, it is likely that one can replace direct access to the database with calls to new data
access objects in a stepwise fashion, but separating the Ul from the business logic has the same
difficulties as it does in a transformation motivated by the Ul alone.

Thus, we have two quite different strategies for moving from a legacy application to one of a more
modern technology and architecture. Traversing the upper two legs of the triangle we begin with the
extremely difficult task of extracting abstract model information from the concrete legacy application,
which is currently not susceptible to much automation. However, once we arrive at the same kind
of starting model which might have arisen from standard OOAD processes, then we can take
advantage of MDA to help write the new application and the revised application can be as modern
in technology and architecture as we like. Alternatively, traversing the lower leg of the triangle, we
can have good success with gradual stepwise transformation if our primary goal is moving to a
service-oriented architecture, but we are less likely to find an easy stepwise path to replacing the user
interface.

There are some transformation projects which can be thought of as taking something of a middle
ground. These are typified by projects in which one of the primary goals is replacing the user
interface and the goal is to implement this change across the entire application. Some of these
projects make some use of MDA to generate at least parts of the new application, but many are
almost entirely manual. It is often the case that those following this path are disappointed by the
amount of code which can be harvested, but if one considers the discussion about intrinsic
framework above and the dramatic change in the fundamental architecture which is being
undertaken, it should perhaps not be surprising that the amount of harvestable code is modest at
best.

The productivity gains possible through the use of generator technologies such as MDA are
dramatic. There is an up-front, one-time investment required to develop the framework and
transforms, but once developed these can be applied to multiple projects with only small incremental
investments to accommodate new requirements. The big obstacle to the efficient use of such
technologies for transforming legacy applications is the limited toolset available for the automated
extraction of abstract model information from the legacy code. If improvements can be made in that
area, then it is almost certain that a full re-invention of the application can be accomplished by this
process less expensively and more rapidly than through the sort of mass re-write process typical of
Ul replacement projects today. As an alternative, one can achieve significant restructuring of an
application by the stepwise conversion to SOA approach as long as one is cautious or patient about
replacing the user interface.

